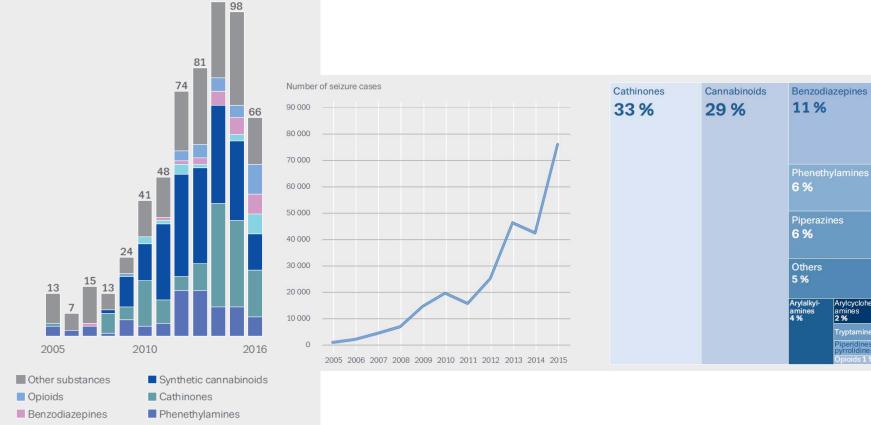
In vitro biotransformation of new psychoactive substances

<u>A.L.N. VAN NUIJS</u>, O. MORTELE, P. VERVLIET, C. GYS, M. DEGREEF, M. CUYKX, K. MAUDENS, F. Y. LAI, A. COVACI.

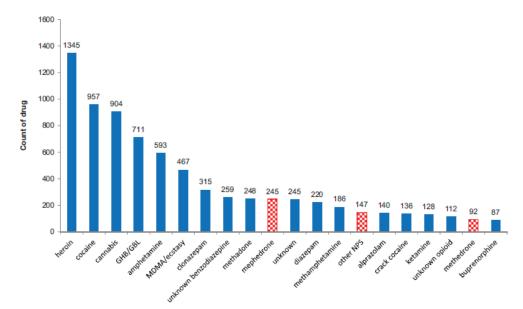


For Forensic Use

Intr	00		tia	n
	υu	luc	ιu	

101

Number and categories of new psychoactive substances notified to the EU Early Warning System for the first time, 2005-16

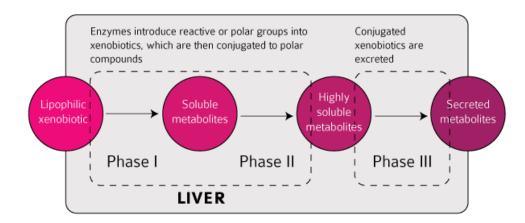

Arylcyclohexylamines

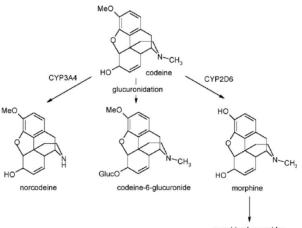
NPS in Europe...

Arylcyclohexyl-amines 2 %

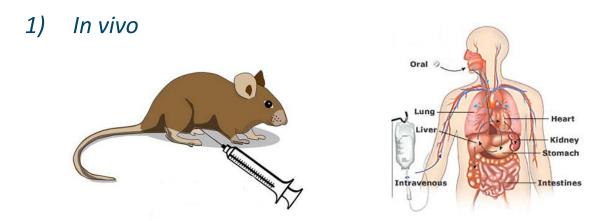
Acute recreational drug and new psychoactive substance toxicity in Europe: 12 months data collection from the European Drug Emergencies Network (Euro-DEN)

ALISON M DINES,¹ DAVID M WOOD,^{1,2} CHRISTOPHER YATES,³ FRIDTJOF HEYERDAHL,⁴ KNUT ERIK HOVDA,⁴ ISABELLE GIRAUDON,⁵ ROUMEN SEDEFOV,⁵ and PAUL I DARGAN^{1,2}; EURO-DEN RESEARCH GROUP*


- Reports of serious agitation, psychosis, coma
- Authors report limitations: what is missed?


Dines et al., Clinical Toxicology, 2015

NPS are a real challenge for forensic toxicology:

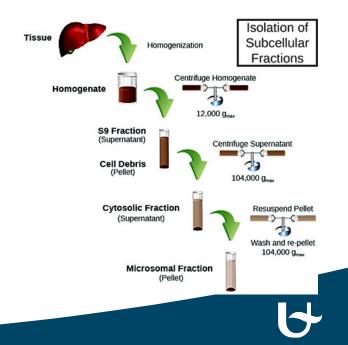

1) Amount of compounds (> 620 monitored in EU and still counting)

2) Unknown metabolic fate of these compounds (Phase-I and Phase-II): which biomarkers to target (parent compound or metabolites)?

Studying the metabolic fate is highly relevant to identify target biomarkers. Several strategies possible:

+: closest to reality, complete biological system

-: ethical and safety issues, expensive

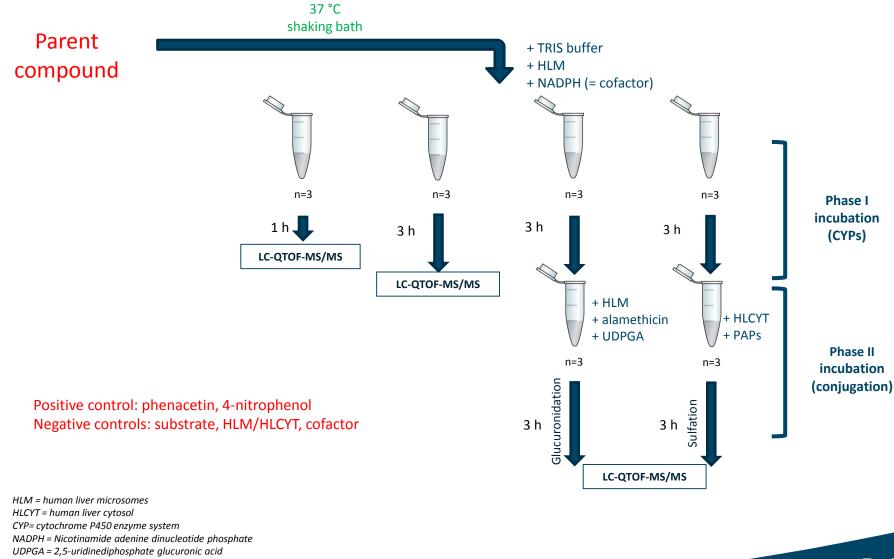

Several strategies possible:

2) In vitro

- Liver slices, isolated perfused liver (complex)
- Primary hepatocytes
- Liver cell lines
- Human liver S9 fraction
- Human liver subcellular fractions (microsomes, cytosol)

-: representative for in vivo biotransformation?

To optimise a straightfoward *in vitro* set-up to elucidate the metabolic pathway of NPS and to identify biomarkers:


- Based on incubations with human subcellular fractions

- Analysis of resulting extracts with liquid chromatography coupled to high resolution mass spectrometry

- Elucidation of metabolites through combination of suspect and nontarget data analysis workflows

Introduction	Aims & Objectives	Methods	Results	Conclusions	

In vitro incubations experimental setup: straightforward

PAPS = adenosine-3-phosphate 5-phosphosulfate

Introduction	Aims & Objectives	Methods	Results	Conclusions

Sample preparation:

- Quenching of the metabolism: + 250 µL ice-cold acetonitrile + 1% formic acid
- Addition of theophylline as 'internal standard'
- Centrifugation 5 min at 8000 rpm
- Evaporation and reconstitution in 200 μL of a 10/90 (v/v) ACN/Milli-Q water solution

Introduction	Aims & Objectives	Methods	Results	Conclusions

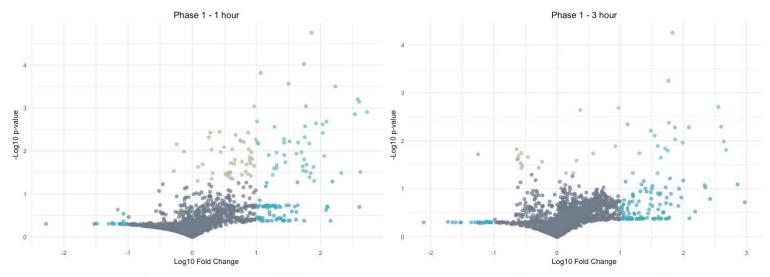
LC-ESI-QTOF-MS

- Agilent 1290 UPLC coupled to Agilent 6530 QTOF
- LC Column: Kinetex C8 (2.1 x 150 mm, 1.7 μm)
- Mobile phase A: MilliQ + 0.04 % FA
- Mobile phase B: 80/20 ACN/Milli-Q + 0.04 % FA
- Run time: 30 minutes (give time to separate!)
- ESI +/-
- Data-dependent acquisition
- Collision energies: 10/20/40 V

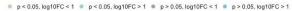
Introduction	Aims & Objectives	Methods	Results	Conclusions

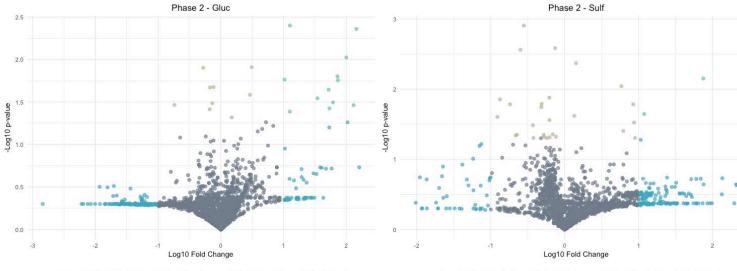
Data analysis:

- 1. Most time-consuming step, but extremely important!
- 2. Combination of suspect and non-target workflows (complementary)
- 3. Identification of metabolites: different confidence levels

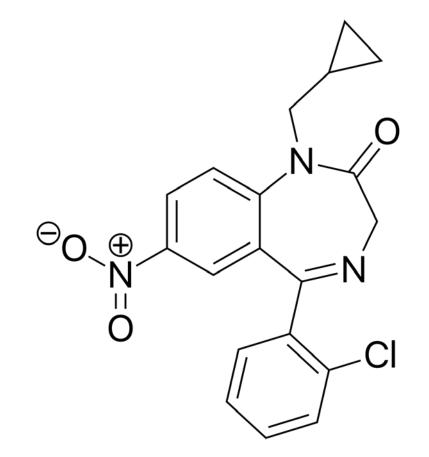

Identification confidence	Minimum data requirements
Level 1: Confirmed structure by reference standard	MS, MS ² , RT, Reference Std.
Level 2: Probable structure a) by library spectrum match b) by diagnostic evidence	MS, MS ² , Library MS ² MS, MS ² , Exp. data
Level 3: Tentative candidate(s) structure, substituent, class	MS, MS ² , Exp. data
Level 4: Unequivocal molecular formula	MS isotope/adduct
Level 5: Exact mass of interest	MS

Suspect screening


- In silico prediction of metabolites with Nexus Meteor (Lhasa Limited) and literature
- Find by Formula algorithm (Agilent MassHunter)
 - >∆ m/z < ± 10 ppm</p>
 - Present in 2 out of 3 replicates
 - Not present in negative controls
 - Double bond equivalent (DBE) match
 - ➢Matching isotope pattern

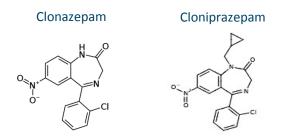

Suspect workflow strategy

p < 0.05, log10FC < 1 </p>
p < 0.05, log10FC > 1
p > 0.05, log10FC < 1 </p>
p > 0.05, log10FC > 1


p < 0.05, log10FC < 1 p < 0.05, log10FC > 1 p > 0.05, log10FC > 1 p > 0.05, log10FC < 1 p > 0.05, log10FC > 1

p < 0.05, log10FC < 1 p < 0.05, log10FC > 1 p > 0.05, log10FC > 1 p > 0.05, log10FC < 1 p > 0.05, log10FC > 1

Volcano plots

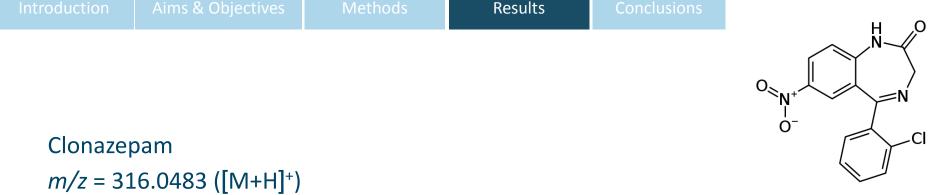

Introduction	Aims & Objectives	Methods	Results	Conclusions

EXAMPLE 1: CLONIPRAZEPAM

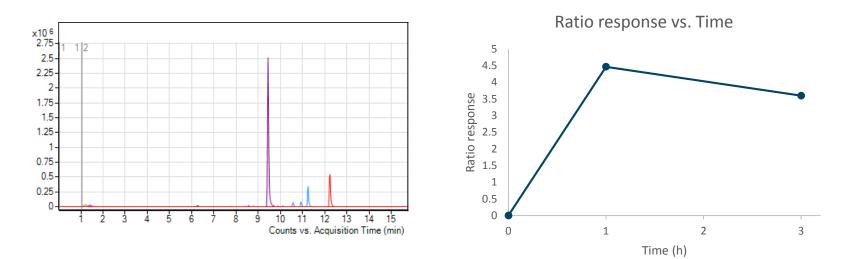
Cloniprazepam = Designer benzodiazepine

• Derived from clonazepam (Rivotril[®])

- Sedative, anti-convulsant, muscle relaxant and anxiolytic properties
- Self-medication: alternative to prescription benzodiazepines
- Combination with other drugs


No clinical information available:

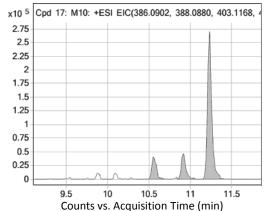
- Pharmacokinetics?
- Metabolism?
- Detection in blood, urine?


l	ntroduction	Aims & Objectives	Methods	Results	Conclusions	1
Libe	m/z = 37	zepam/Parent cc 70.0953 ([M+H] ⁺)	Loss of methylcyclopropyl			
Abundance	ary spectrum 110 100- 90- 80- 70- 60- 50		316.04300 100.00	×10 ⁵ 7- 6- 5- 4- 3- 2- 1- 0- +H]+	Counts vs.	122 123 124 125 126 127 128 129 Accuisition Time (min)
	50- 40- 30- 20- 10- 55.05350 0.93 0- 50 75	176.04379 241 0.85 100 125 150 175 200 225		15.00 15.00 14.48 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 00 00 00 00 00 00 00 00 00	Ratio res	ponse vs. Time

Time (h)

m/z

- Most prominent metabolite
- Confirmed with MS/MS and analytical reference standard

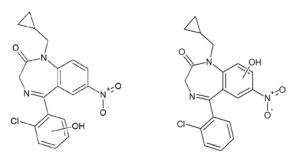

Introduction	📔 Aims & Obje

Hydroxy-cloniprazepam

 $m/z = 386.0902 ([M+H]^+)$

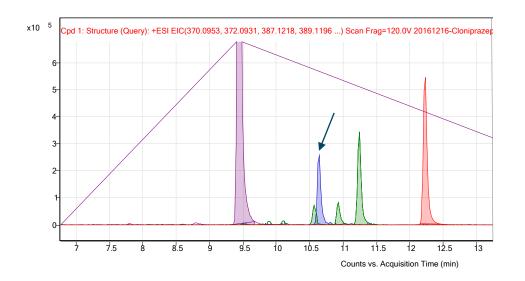
Different isomers present

ОН



-> no hydroxylation on the methylcyclopropyl side chain

Fragment m/z 332.04 corresponds with hydroxy-clonazepam


- RT 11.2 min: Loss of $H_2O \rightarrow$ Ramanathan et al (Anal Chem, 2000, 72: 1352-1359): "MS/MS data showed loss of water with aliphatic hydroxylation, which was not favoured when the hydroxylation was phenolic"
- RT 10.6 and 10.9 min: No loss of H₂O present

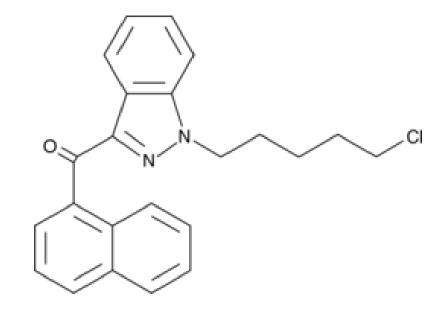
MS/MS available for 3 highlighted peaks

Introduction	Aims & Objectives	Methods	Results	Conclusions	Δ
	oniprazepam				
<i>m/z</i> = 38	4.0746 ([M+H] ⁺)				

- Not predicted by *in silico* prediction
- Identified by non-target workflow
- Confirmed by MS/MS and double bond equivalents

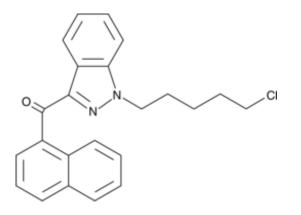
Introduction	Aims & Objectives	Methods	Results	Conclusions		
clonipraz	<i>in vitro</i> metabolit epam identified se I and 1 Phase II			M6	O O O O O O O O O O O O O O O O O O O	**************************************
 Clonazep metaboli 	oam: most promin ite	ent <i>in vitro</i>				OGluc
clonipraz - OH-clon - 7-NH ₂ -cl	olites were specific epam iprazepam oniprazepam loniprazepam	c for	↓ ↓ ₽	M7 M7 M7 M5		0
- Dihydrox - Glucuror	ky-cloniprazepam nide of OH-clonipraz ble biomarkers for				\rightarrow	0

intake

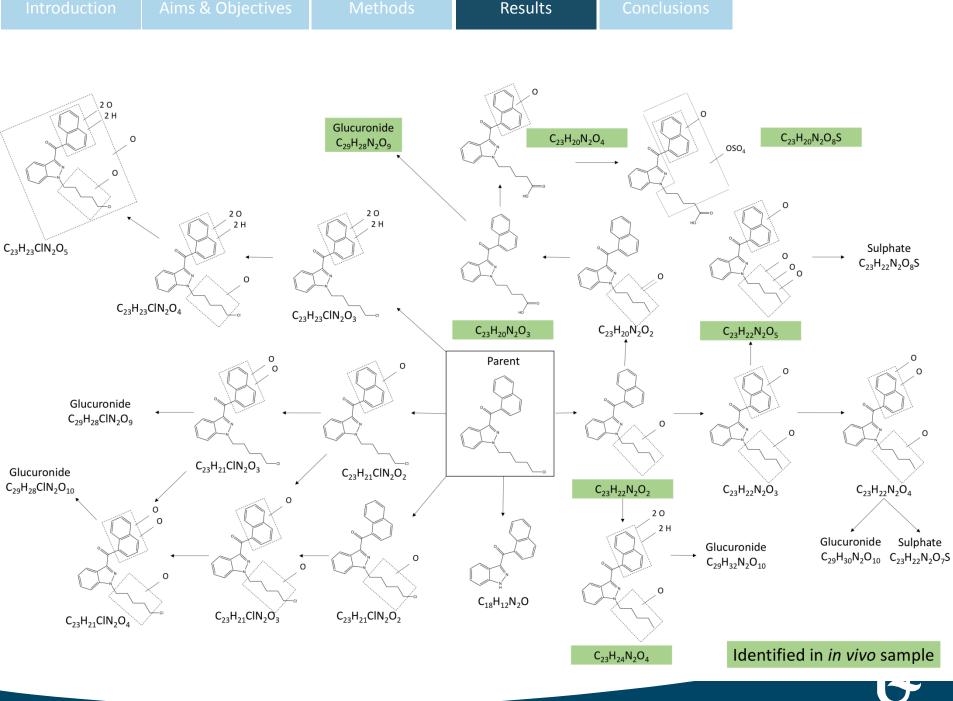

M1

C

M4

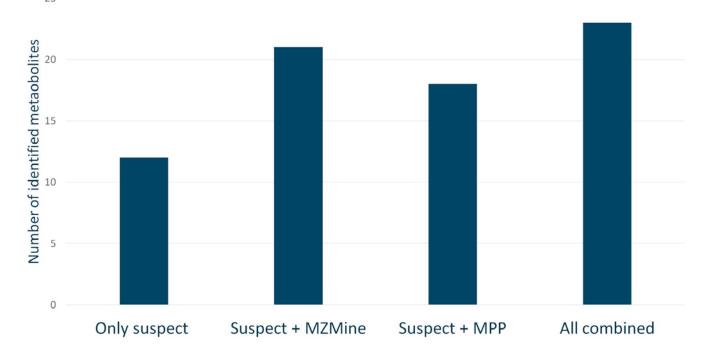

M2

EXAMPLE 2: 5CI-THJ-018



Introduction Aims & Object	ves Methods	Results	Conclusions	
----------------------------	-------------	---------	-------------	--

5-Cl-THJ-018 = Synthetic cannabinoid (5-chloropentyl JWH 018 indazole analog)



- Cannabinoid receptor agonist: cannabis-like effects
- The physiological and toxicological properties of this compound have not been determined
- Extensive biotransformation can be expected!
- Possibility to compare the *in vitro* results with *in vivo* case: authentic urine sample from user (who actually thought he used methiopropamine)

Introduction	Aims & Objectives	Methods	Results	Conclusions

Overview screening workflows

Complementarity of the workflows!!!!

Conclusions

- Investigation of NPS metabolic fate is necessary to select target biomarkers
- Easy and straightforward set-up with subcellular fractions, but limitations need to be taken into account:
 - Only selected enzymes present (e.g. NAT,...)
 - No complete biological system
 - Qualitative, not quantitative
- Importance of (i) sound data acquisition and (ii) complementary data analysis workflows

Toxicological Centre University of Antwerp

Thank you for your attention! Questions?

