Examination of rocket fuel poisoning

<u>A.K. Buryak</u>, A.L. Milyushkin, D.D. Matyushin, I.S. Pitski

A.N. Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences (IPCE RAS), Leninsky dr. 31, 119071 Moscow, Russia

e-mail: <u>AKBuryak@mail.ru</u>

Modern rocket and space technology is based on developments of the 1970s

Environmental risks of rocket and space activities

Energy-intensive technologies. Unique and small-scale production. Global pollution of terrestrial and near-Earth space. Ozone layer destruction. Operation of hazardous production, use of toxic components.

"Heptil" - 1,1 - dimethyl hydrazine

Some of the well-known transformation products of UDMH

Hygienic standards of UDMH and its transformation products

Cubatanaa	Maximum permissible concentration					
Substance	Air working area, mg/m ³	Atmospheric air average daily, mg/m ³	Household water, mg/l	Soil, mg/kg		
UDMH	0,1	0,001	0,02	0,1 *		
Dimethylamine	1,0	0,005	0,1	-		
Tetramethyltetrazene	3,0	0,005	0,1	-		
Nitrozodimetilamine	0,001	0,001	0,01	-		
N,N- dimethylformamide	10,0	-	-	-		
Trimethylamine	5,0	0,16	0,05			
1-methyl-1,2,4-triazole	-	-	-	-		
Dimethyl-1,2,4-triazole	-	-	-	-		
Guanidine	-	-	0,1	-		

* roughly safe exposure

The tasks of chromatography-mass spectrometry in the field of ecology of the rocket and space industry

Maintaining existing technologies

- Modernization based on in-depth studies of the mechanism of reactions
- Expansion of control and analytical procedures

Development of new technologies

- Cheap
- Reliable

Modern chromatographic-massspectrometric methods used in the rocket and space industry

Variants of chromato-massspectrometry

- ON-LINE
 - GC-MS
 - LC-MS
 - IC-MS
 - CE-MS
- OFF-LINE
 - TLC-MS
 - LC-MS

GC-MS

- GC/GC MS/MS
- Restriction of mass-spectrometry no theory possessed to predict mass-spectra
- For gas chromatography molecularstatistical theory can calculate Henry constants (retention time) and empirical methods can calculate retention indexes

What does it mean "identify molecul"?

- Construct molecular structure
- Compare suspected structure and experimentally observed

Molecular structure

 Based on mathematic calculation of all possible structures of investigated class of isomers.

PCIB's	209
PCIBrB's	4078

 Theoretical (quantumchemical or constructed based on structural chemistry lows.

Draw	Minutes
Calculate	Hours

Where we can find molecular structure?

Theoretical calculation	NMR
Gas-phase electron diffraction	IR-, UV-spectroscopy

• Roentgeno-structural analyses (X-ray studies)

Abilities of chromato-mass-spectrometry for isomers identification

Chromatography	Mass-spectrometry	
Standards	Standards	
Library search	Library search	
Calculation of retention values	Calculation of mass-spectra	
Correlations retention - structure	Regularities of fragmentation	
Specific variants of analysis	Structure specific methods	

- Combined libraries of retention indexes and mass-spectra
- Chromatographic filter for mass-spectral data

Abilities of chromato-mass-spectrometry for isomers identification

Chromatography	% of reliability	Mass-spectrometry	% of reliability
Standards	25	Standards	50
Two columns	50	MS/MS	75
Library search	10	Library search	30
Calculation of retention values: (mol-stat.) indexes	25 10	Calculation of mass- spectra Sequence de novo	0 10
Correlations retention - structure	10	Regularities of fragmentation	10
Specific variants of analysis	?	Structure specific methods	?

• We must collect 125 %, because precision +/- 25%

MOLECULAR STATISTICAL METHOD

Henry constant for adsorption of quasirigid molecules:

$$K_{1} = \frac{1}{4\pi} \iint \left(\frac{2kT}{\Phi_{z}''}\right)^{2} \exp \left(-\frac{\Phi_{0}}{kT}\right) \sin \Theta d\Theta d\Psi$$
(1)

where Φ_0 and Φ_z - values of potential function of intermolecular interaction of adsorbate molecules with the adsorbent, and it second derivative by the distance z the mass center of the molecule from the surface of the adsorbent at the equilibrium distance z_0 . The values of Φ_z , Φ_0 and z_0 depends on the Euler angles Θ and ψ , defining the orientation of the molecules on the surface of the adsorbent.

Potential function Φ :

$$\Phi = \sum_{a \ c(\Gamma TC)} \varphi_{a...c(\Gamma TC)}$$
(2)

For $\varphi_{a...c(\Gamma TC)}$ the potential in Buckingham-Korner form was chosen:

$$\varphi_{a...c(\Gamma TC)} = -C_1 r^{-6} - C_2 r^{-8} + B \cdot \exp(-qr) , \qquad (3)$$

where C_1 and C_2 , kJ · nm ·mol⁻¹ - parameters of attraction forces, B, kJ · nm ·mole⁻¹, q, nm⁻¹ - the parameters of repulsive forces. Parameter of repulsive forces q taken to be 35.7 nm⁻¹

Molar differential heat ($\Delta \bar{U}_1$) and entropy ($\Delta \overline{S_1}$) of adsorption :

$$\ln K_{1.C} = = (\Delta \overline{S_1} + R)/R - \Delta \overline{U_1}/(RT) \qquad , \qquad (4)$$

где $\Delta \overline{S_1}$ - entropy, $\Delta \overline{U_1}$ - heat of adsorption.

Combination of molecular-statistical calculations and GC-MS data

Molecular-sta	tistical theory	GC-MS experiment					
Reference data	Reference data Chromatography results			Mass-spectral data			
Calculation		Experiment	Library search	Fragmentation	Element coposition		
Structure				Structure			

Molecula identification

Structures of isomeric cis-, trans-methyldicyclopropyl- cyclopropanes

Chromatograms of isomeric cis-, trans-methyldicyclopropyl- cyclopropanes on DB-5 and micro packed column with GTCB.

Three dimensional diagram

Differences between calculated Henry constants of isomeric cis-, trans-methyl-dicyclopropyl- cyclopropanes for different angles of internal rotation

					α_1		
		120	150	180	210	240	270
	90	<u>0,886</u>	<u>0,7340</u>	<u>0,4436</u>	<u>0,0811</u>	<u>0,0762</u>	<u>0,1813</u>
	120	1,679	1,3483	0,786	0,1355	-0,816	<u>-0,7059</u>
	150	0,693	0,6968	0,4361	0,2076	-0,532	<u>-0,7968</u>
α_2	180	0,016	-0,056	-0,165	-0,119	0,0206	<u>0,0011</u>
	210	-0,142	0,0218	-0,148	-0,095	0,4120	<u>1,1031</u>
	240	<u>-0,682</u>	<u>-0,386</u>	<u>-0,572</u>	<u>-0,363</u>	<u>0,3134</u>	<u>-0,0467</u>
	270	<u>-0,363</u>	<u>-0,486</u>	<u>-0,294</u>	<u>0,3801</u>	0,3751	<u>-0,8227</u>

Kovach Retention indexes

$$J_{x} = J_{n} + (J_{n+1} - J_{n}) \frac{(f(t_{R,x}) - f(t_{R,n}))}{(f(t_{R,n+1}) - f(t_{R,n}))}$$

$$f(t_R) = t_R + q lg(t_R - t_0)$$

Correlation "retention-property"

any physical or chemical property of molecule(t boiling, van-der-Vaals volume, dipole moment, polarization, critical volume, pressure, temperature
topology indexes

RIC of sulfur and non-symmetrical dimethylhydrazine interaction products

Mass-spectrum of unknown molecul

Retention indexes (RI)

tr, min	Substance	RI	MW	(m/z) ¹⁰ 0
5,9	Dimethyldisulfide*	730	94	94
9,4	di-(N,N-dimethylaminosulfide	816	120	76
11,3	Dimethylhydrazonedimethylformamide	869	115	44
12,5	N,N-dimethylaminomethyldisulfide	904	123	76
14.1	Dimethyltrisulfide *	952	126	126
15,6	Dimethylsulfonitrosoamine	998	90	90
15,9	N,N-dimethylmetanosulfoamide	1008	89	89
18,6	di-(N,N-dimethylaminodisulfide	1093	152	44
19,6	N,N-dimethylaminomethyltrisulfide	1126	155	76
21,6	Dimethyltetrasulfide *	1191	158	79
23,7	di-(N,N-dimethylaminotrisulfide	1261	184	42
24,3	Unknown	1281	129	129
25,9	N,N-dimethylaminomethyltetrasulfide	1334	187	76

* compounds, choused as standards

Suspected fragmentation scheme of dimethylsulfonitrosoamine

Abundance

Space experiments

"Kromka 1-3" - ISS

Chemical composition of products of incomplete combustion of rocket fuel

Fresh precipitate

Nº	Substance	m/z	%				
1	NO	30	8.97	14	Dihydrazone dihydrazine	m/z	%
2	CO ₂	44	9.52	15	1-methyl-1H-1,2,4-triazole	83	5.65
3	Ammonia	17	16.45	16	4,5-dihydro-3,4,5-trimethyl-1H-pirazole	97	0.67
4	H₂O	18	30.58	17	N,N-diethylacetamide	115	0.42
5	Dimethylamine	44	1.75	18	1H-3,5-diamino-1,2,4-triazole	99	1.14
6	Trimethylamine	E0	0.50	19	heterocyclic nitrogen-containing compound	107	0.07
		00	0.00	20	Imidazole	108	0.19
7	Formaldehyde dimethylhydrazone	42	0.68	21	1H-1 2 4-trimethyltriazole	97	0.38
8	Derivative of Isocyanate	56	8.30	22	6-methyl-4 5-diaminoprimidine	124	0.37
9	Dimethylhydrazine acetone	100	0.33	22		124	0.07
		100		23	N,N-dimethylurea	97	0.01
10	Nitrozodimethylamine	74	3.87	24	Derivative of N,N-dimethylurea	102	1.48
11	Dimethylaminoacetonitrile	83	3.10	25	1H-4-nitropirazole	113	0.39
12	N,N-dimethyldimethylformamide	73	1.06	26	Derivative of UDMH	121	0.09
13	4-dimethylaminomethyltetrasulfide	94	0.18	27	Derivative of UDMH	134	0.04

Complex salts with organic cations and inorganic anions NO_{3} , NO_2^- , CO_3^{2-} provide an abnormally high activity of contaminants even in a vacuum.

A lot of toxic products

Abilities of HPLC-MS for molecules identification

HPLC	Mass-spectrometry	
Standards	Standards	
Library search	Library search	
Calculation of retention values	Calculation of mass-spectra	
Correlations retention - structure	Regularities of fragmentation	
Specific variants of analysis	Structure specific methods	

Adsorption of isomeric associates

Correlation: molecular statistical calculation - experiment

 $R^2 = 0.976$

FORMATION OF THE PRODUCT OF OXIDATIVE TRANSFORMATION OF UDMH (BLACK OSMOL)

THE CHROMATOGRAM OF "BLACK OSMOL"

HPLC-ESI-ToF-MS (C18-column, extracted ion chromatogram)

The tandem mass spectrum recorded for the ion with m / z 224 from the first peak with a retention time of 9.5 minutes

Scheme of fragmentation of ion 224

Possible directions of educationsubstances with m / z 154 and 224

A number of sample toxicity in relation toof HELA cells in descending order

Conclusion

- When assessing the poisoning with rocket fuels, it is necessary to take into account the components of fuels and the products of their transformation.
- Establishing the structure of unknown products of transformation of rocket fuels is the most important stage in assessing their toxicity.
- Chromato-mass spectrometry, supplemented by calculations of retention values, is the main method for studying rocket fuel poisoning.

Thank you for the attention!

Mass spectrum SALDI of "zarubashechnogo" space.

The launch of the Proton launch vehicle